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Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices
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The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined
on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the
ground-state degeneracy, at a given hierarchy leyiel terms of contributions due to all hierarchy levels. Such
a method may vyield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an
approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approxima-
tion yields lower-bound estimates for the ground-state degeneracies.

PACS numbg(s): 64.60.Ak, 75.10.Nr, 05.58.q, 65.50+m

Magnetic models presenting frustration have called the The average number of g.s.’s has been estimated for
attention of many workers during the last decaffEls The  short-range Ising spin glasses on diamond hierarchical lat-
frustration concepf2] results from the competition between tices (HL'’s), with different probability distributions for the
interactions, leading to the possibility of several minimum-couplings[10]: one finds a zero g.s. complexity per particle
energy configurations. Many real systems display frustrationin the case of continuous probability distributions, whereas
like ice [1], spin glassef3-5], and diluted antiferromagnets for a bimodal ¢-J) distribution, an exponential increase in
[6]. In spin glasses, frustration effects are combined with N (1., has been verified, on lattices of fractal dimensions
disorder, leading to a highly nontrivial low-temperature di=<d<5 (where d,~2.58 represents the respective spin-
phase, with many metastable states, usually associated Wit}"gqaass lower critical dimensionwith h varying roughly from
very slow dynamics. . 0.16(for d=d,) to 0.27(for d=5). Obviously, the exponen-

Many frustrated systems present an extensive groundia increase of Eq(1) is expected to hold for diamond HL’s
state(g.s) degeneracy, in such a way that the total number ofyith any fractal dimensiord=d,. Such a calculation was
g.s.'s increases exponentially with the number of NeBor  performed within the now called Factorization Approach
disordered models, the average number of g.§Rg ], FA), for which the total number of g.s.’s at hierarchy lemel
(herein[ ], represents an average over an arbitrary type 0;5 expressed as a product of properly defined partial number
disorder: for random magnetic fields, one has an averaggf g.s’s at hierarchy levels,n—1,...,1. The FA is in
over the field probablllty distribution, whereas in the case of, eneral an approximation’ and it leads to the exact g_s_ de-
spin glasses, one has an average over the coupling probabﬁeneracy only for very simple systend1]. Another

ity distribution), behaves like method, denoted herein as the recursive appréaéh [11],
allows one to calculate the g.s. degeneracy through exact
[Ngsla,~exp(hN), (1) recursion relations, based on the recursive properties of the

particular HL. Recently, the g.s. entropy of several uniformly
whereh is some positive finite numb¢in the case of Ising  frustrated Ising antiferromagnets on fractal lattices has been
systems, &<h=<In 2, since the maximum number of states is calculated exactly through the RA1]. It was shown that,
2N=exp(NIn2)]. For uniform systemgwith no random-  for some simple models, the FA yields the correct residual
nesg, there is no average over the disorder, in such a wagntropy, whereas in other cases, it leads to a lower estimate,
that, in the thermodynamic limit, one gets tHet so, where  as compared with the one obtained through the RA. Herein,
Sp denotes the zero-temperature entropy per particle, usuallye discuss under which conditions the FA yields the correct
denoted the residual entroglierein we work in units okg  estimate for the g.s. degeneracy of Ising systems on arbitrary
=1). For randomly frustrated systems, due to the averagingiL’s; in particular, we demonstrate that, in the case of ran-
processh is not related to the g.s. entropy, but rather to thedomly frustrated systems, the FA estimate represents always
g.s. complexit{ 7]. A behavior similar to the one of E4l)  a lower bound.
holds for the infinite-range-interaction Ising spin gld83, Let us now introduce the two above-mentioned methods
with h~0.20[9]. The applicability of Eq.(1) for nearest- for calculating the g.s. degeneracies of frustrated systems.
neighbor-interaction Ising spin glasses on Bravais latticeThe RA is based on the recursive properties of the particular
represents, at the moment, a controversial m@ger HL; the central idea is to express g.s. degeneracies at a given
hierarchy level in terms of those of the previous hierarchy.
For a given disorder configuration, one may fix the spins of
*Email address: eme@chbpf.br the zeroth hierarchy leveht this level, the number of termi-
"Email address: nobre@dfte.ufrn.br nal spins of a given unit cell of the HL is definedh such a
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way so as to obtain a set 6} possible degeneracies at NG NG
. : _ ()
an arb_ltrary hlc_ararchy leve; for each value ofr one has a Ng_‘g_: r™Mp)= IT (g,)Neat. (6)
recursion relation n=1 a=1 "a
GW=w (GF D c¥ D, . ... (2)

One may easily see that, if one succeeds in obtaining the
. ) . recursion relations of Eq2), within the RA, the total num-
Since one may compute easily the_ set of degeneracu_as BEr of g.s.’s of Eq(3) may be also written in the form of the
hierarchy level Xat this level, the basic unit cell of the HL is equation above. Comparing Eq&) and (6), one gets the
generate] {G{"}={g,}, the recursion relations in E42)  ocursion relation '

may be followed up to any desired hierarchy level. For a

fixed disorder configuration, the total number of g.s.’s of the

HL at its nth hierarchy level is expressed as Ngg? Ng?s_,l)ﬁ(“)), (7)
NSEFE a,G", (3)  which may be iterated to yield
where the coefficienta, count how many different configu- N{L=(T T Dy(r®=2)). . (TAHA, t3)

rations of the spins at the zeroth level contribute to the same
I - - i i
G, . Finally, if one 1s dealing with a random _system, an where the factoA corresponds to the number of states asso-
average over.the(g)lsorder has to be performed, in such a Waated to hierarchy level 0. The FA is represented in the
S0 as to Obta'rﬁNg-SJav' . ) . . equation above, expressing the total number of g.s.’s of a HL
If one succeeds n obtaining the recursion relatlo'ns N Edat its nth hierarchy level as a factorization of contributions
(2 exactly, th.e RA yields the exapt number of g.s.’s of thedue to all hierarchy levelsk=n,n—1, .. .,1,0). Itshould
HL at its nth hierarchy level, as defined by E®). However, o mentioned that, up to this point, both metheRs\ and

this turns out to be a difficult task in some cases, IiI§e forFA) yield the samdexac) g.s. degeneracy estimate.
random systems, where one has to deal with the disorder \ow et us substitute Eq4) into Eq. (5); one gets that

average. In such cases, the FA appears as a very convenient

technique.
Herein, we shall introduce the FA for the general case of 1 Ng.‘;l)
an arbitrary randomly frustrated system. Before doing that, (T®y= — > exp( > Ngkfy(,u)m 9a>
we shall present a few definitions. Let us consider a given N(g_s_ ) im1 a ’
HL at its nth hierarchy level; one may count partially the
number of g.s.’s of the HL by fixing the terminal spins of 2exp( > ¢®n ga) =TT (9.4, 9)
each unit cell, in such a way that they correspond to one a a

specific g.s. configuratiop. of the HL at hierarchy leveh

—1. One may easi_ly see that, fof an arbi_tr{:lry Ieketh_e %Nhere the general property of the exponential function,
number of g.s. configurations obtained by fixing the spins o(exp(><))>exp((x>) has been used. and we have defined
level k—1 (i.e., the increase of g.s. configurations in going ' '

from hierarchyk—1 to hierarchyk) may be written as
n(k=1)
g.s.
(k) (k) — /N — (k)
F(k)(,u)=1;[ (ga)cha(”), (4) d’a <Nc,a> Néks_l) MZJ_ Ncya(ﬂ): (10)

whereN{(x) denotes the number of unit cells, at the par-for the average, over g.s. configurations, of the number of
ticular g.s. configuration of level k—1, with degeneracy ce|is with degeneracy,,; obviously, one has thak ¢

d., in the HL at itskth hierarchy level. It is important to :Ngk)_ In simple uniform modeIsN(ck)(,u) may be caloéu-
recall that, whenever applicable, the trivial cage=1 (NON-  |5teq exactly for each g.s. configuratipn[11], whereas in
frustrated .cebl is included |||(1 Eq.(4) |r; such a wa%/ that for 1 ore complicated uniforni11] or random problem$10],
each configuration:, = ,N((#)=N(”, whereNg” repre- o0 may need to repladé® (1) by ¢ . In the latter cases,

sents the total number of unit cells of the HL at hierarchyy,q £a yields lower-bound estimates for the total number of
level k. The average over a set of g.s. configurati¢ps

(herein denoted by)), of hierarchy levek— 1, becomes g:s’s. le.
Ngs . ®
(P = = Z r®w). (5) Ngg?Akll (1;[ (9a) P ) (13)
Ng.s. pn=1
On the other hand, from the definition Bf¥(w) in Eq. (4), Let us now consider a randomly frustrated system, in

one sees that the total number of g.s.’s of the HL ahtts  which case one needs to apply an average over the disorder;
level is given by in the equation above one has that
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o Al T1TT (g [NG2a, =[N el - (14
[Ng,s av/A (ga) @ ..
k=1 «a a It is important to recall that the above result holds for an

arbitrary HL. This ensures that the results of Réf], for
nearest-neighbor-interactiont J Ising spin glasses on dia-
mond HL’s, are indeed lower-bound estimates; the FA
yields, for thed=3 diamond HL, the exponential increase of
n Eq. (1) with h~0.208[10]. The result[N{2],,=2 if d
zexp( kZl 2 [¢¥1a I ga) : (12 >2.58, for continuous probability distributions for the cou-
e plings[10], is in full agreement with recent investigations of
where we have used, similarly to what was done in 4. the Ising spin_ glass, with a_Gaussian probability di_stribu;ion
the convexity property of the exponential function. It is im- for the couplings, on the diamond HL of fractal dimension
portant to point out that the averages over the disorder in E§1=3, which find evidence of a simple spin-glass phase

(12) refer to hierarchy leveh (in [N{2],,) and to each hi- chara(;]terized lby tv]:/o tirEe-]re\;ersehd states pfi]. Hkg)w- ¢
. k) . S-av - ‘i €ver, the results of Ref.10|, for the average number o
erarchy levek (in [ ¢, Ja,), since the probability distribu round states oftJ Ising spin glasses on diamond HL's,

tion associated with the disorder is renormalized at each hi9'° )
erarchy level. which are demonstrated herein to represent lower-bound

Let us now define the FA for random systefd§] as an estimates—implying that this average number increases ef-
fectively as an exponential dl—strongly suggest a differ-

approximation which allows one to factorize the average t picture for th in-al h ¢ h ;
number of ground states as ent picture for the spin-glass phase of such systems.
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