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Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices
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The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined
on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the
ground-state degeneracy, at a given hierarchy leveln, in terms of contributions due to all hierarchy levels. Such
a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an
approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approxima-
tion yields lower-bound estimates for the ground-state degeneracies.

PACS number~s!: 64.60.Ak, 75.10.Nr, 05.50.1q, 65.50.1m
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Magnetic models presenting frustration have called
attention of many workers during the last decades@1#. The
frustration concept@2# results from the competition betwee
interactions, leading to the possibility of several minimu
energy configurations. Many real systems display frustrat
like ice @1#, spin glasses@3–5#, and diluted antiferromagnet
@6#. In spin glasses, frustration effects are combined w
disorder, leading to a highly nontrivial low-temperatu
phase, with many metastable states, usually associated w
very slow dynamics.

Many frustrated systems present an extensive grou
state~g.s.! degeneracy, in such a way that the total numbe
g.s.’s increases exponentially with the number of sitesN. For
disordered models, the average number of g.s.’s,@Ng.s.#av
~herein@ #av represents an average over an arbitrary type
disorder: for random magnetic fields, one has an aver
over the field probability distribution, whereas in the case
spin glasses, one has an average over the coupling prob
ity distribution!, behaves like

@Ng.s.#av;exp~hN!, ~1!

whereh is some positive finite number@in the case of Ising
systems, 0<h< ln 2, since the maximum number of states
2N5exp(N ln 2)#. For uniform systems~with no random-
ness!, there is no average over the disorder, in such a w
that, in the thermodynamic limit, one gets thath5s0, where
s0 denotes the zero-temperature entropy per particle, usu
denoted the residual entropy~herein we work in units ofkB
51). For randomly frustrated systems, due to the averag
process,h is not related to the g.s. entropy, but rather to t
g.s. complexity@7#. A behavior similar to the one of Eq.~1!
holds for the infinite-range-interaction Ising spin glass@8#,
with h'0.20 @9#. The applicability of Eq.~1! for nearest-
neighbor-interaction Ising spin glasses on Bravais latti
represents, at the moment, a controversial matter@5#.
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The average number of g.s.’s has been estimated
short-range Ising spin glasses on diamond hierarchical
tices ~HL’s!, with different probability distributions for the
couplings@10#: one finds a zero g.s. complexity per partic
in the case of continuous probability distributions, where
for a bimodal (6J) distribution, an exponential increase
@Ng.s.#av has been verified, on lattices of fractal dimensio
dl<d<5 ~where dl'2.58 represents the respective sp
glass lower critical dimension!, with h varying roughly from
0.16~for d5dl) to 0.27~for d55). Obviously, the exponen
tial increase of Eq.~1! is expected to hold for diamond HL’s
with any fractal dimensiond>dl . Such a calculation was
performed within the now called Factorization Approa
~FA!, for which the total number of g.s.’s at hierarchy leven
is expressed as a product of properly defined partial num
of g.s.’s at hierarchy levelsn,n21, . . . ,1. The FA is in
general an approximation, and it leads to the exact g.s.
generacy only for very simple systems@11#. Another
method, denoted herein as the recursive approach~RA! @11#,
allows one to calculate the g.s. degeneracy through e
recursion relations, based on the recursive properties of
particular HL. Recently, the g.s. entropy of several uniform
frustrated Ising antiferromagnets on fractal lattices has b
calculated exactly through the RA@11#. It was shown that,
for some simple models, the FA yields the correct resid
entropy, whereas in other cases, it leads to a lower estim
as compared with the one obtained through the RA. Her
we discuss under which conditions the FA yields the corr
estimate for the g.s. degeneracy of Ising systems on arbit
HL’s; in particular, we demonstrate that, in the case of ra
domly frustrated systems, the FA estimate represents alw
a lower bound.

Let us now introduce the two above-mentioned metho
for calculating the g.s. degeneracies of frustrated syste
The RA is based on the recursive properties of the partic
HL; the central idea is to express g.s. degeneracies at a g
hierarchy level in terms of those of the previous hierarc
For a given disorder configuration, one may fix the spins
the zeroth hierarchy level~at this level, the number of termi
nal spins of a given unit cell of the HL is defined!, in such a
8814 ©2000 The American Physical Society
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way so as to obtain a set of$Ga
(k)% possible degeneracies

an arbitrary hierarchy levelk; for each value ofa one has a
recursion relation

Ga
(k)5Ca~G1

(k21) ,G2
(k21) , . . . !. ~2!

Since one may compute easily the set of degeneracie
hierarchy level 1~at this level, the basic unit cell of the HL i
generated!, $Ga

(1)%[$ga%, the recursion relations in Eq.~2!
may be followed up to any desired hierarchy level. Fo
fixed disorder configuration, the total number of g.s.’s of t
HL at its nth hierarchy level is expressed as

Ng.s.
(n)5(

a
aaGa

(n) , ~3!

where the coefficientsaa count how many different configu
rations of the spins at the zeroth level contribute to the sa
Ga

(n) . Finally, if one is dealing with a random system, a
average over the disorder has to be performed, in such a
so as to obtain@Ng.s.

(n)#av .
If one succeeds in obtaining the recursion relations in

~2! exactly, the RA yields the exact number of g.s.’s of t
HL at its nth hierarchy level, as defined by Eq.~3!. However,
this turns out to be a difficult task in some cases, like
random systems, where one has to deal with the diso
average. In such cases, the FA appears as a very conve
technique.

Herein, we shall introduce the FA for the general case
an arbitrary randomly frustrated system. Before doing th
we shall present a few definitions. Let us consider a giv
HL at its nth hierarchy level; one may count partially th
number of g.s.’s of the HL by fixing the terminal spins
each unit cell, in such a way that they correspond to o
specific g.s. configurationm of the HL at hierarchy leveln
21. One may easily see that, for an arbitrary levelk, the
number of g.s. configurations obtained by fixing the spins
level k21 ~i.e., the increase of g.s. configurations in goi
from hierarchyk21 to hierarchyk) may be written as

G (k)~m!5)
a

~ga!Nc,a
(k) (m), ~4!

whereNc,a
(k) (m) denotes the number of unit cells, at the pa

ticular g.s. configurationm of level k21, with degeneracy
ga , in the HL at itskth hierarchy level. It is important to
recall that, whenever applicable, the trivial casega51 ~non-
frustrated cell! is included in Eq.~4! in such a way that for
each configurationm, (aNc,a

(k) (m)5Nc
(k) , whereNc

(k) repre-
sents the total number of unit cells of the HL at hierarc
level k. The average over a set of g.s. configurations$m%
~herein denoted bŷ&), of hierarchy levelk21, becomes

^G (k)&5
1

Ng.s.
(k21) (

m51

Ng.s.
(k21)

G (k)~m!. ~5!

On the other hand, from the definition ofG (k)(m) in Eq. ~4!,
one sees that the total number of g.s.’s of the HL at itsnth
level is given by
at
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Ng.s.
(n)5 (

m51

Ng.s.
(n21)

G (n)~m!5 (
m51

Ng.s.
(n21)

)
a

~ga!Nc,a
(n) (m). ~6!

One may easily see that, if one succeeds in obtaining
recursion relations of Eq.~2!, within the RA, the total num-
ber of g.s.’s of Eq.~3! may be also written in the form of the
equation above. Comparing Eqs.~5! and ~6!, one gets the
recursion relation

Ng.s.
(n)5Ng.s.

(n21)^G (n)&, ~7!

which may be iterated to yield

Ng.s.
(n)5^G (n)&^G (n21)&^G (n22)&•••^G (1)&A, ~8!

where the factorA corresponds to the number of states as
ciated to hierarchy level 0. The FA is represented in
equation above, expressing the total number of g.s.’s of a
at its nth hierarchy level as a factorization of contribution
due to all hierarchy levels (k5n,n21, . . . ,1,0). Itshould
be mentioned that, up to this point, both methods~RA and
FA! yield the same~exact! g.s. degeneracy estimate.

Now, let us substitute Eq.~4! into Eq. ~5!; one gets that

^G (k)&5
1

Ng.s.
(k21) (

m51

Ng.s.
(k21)

expS (
a

Nc,a
(k) ~m!ln gaD

>expS (
a

fa
(k) ln gaD 5)

a
~ga!fa

(k)
, ~9!

where the general property of the exponential functio
^exp(x)&>exp(̂ x&), has been used, and we have defined

fa
(k)5^Nc,a

(k) &5
1

Ng.s.
(k21) (

m51

Ng.s.
(k21)

Nc,a
(k) ~m!, ~10!

for the average, over g.s. configurations, of the number
cells with degeneracyga ; obviously, one has that(afa

(k)

5Nc
(k) . In simple uniform models,Nc,a

(k) (m) may be calcu-
lated exactly for each g.s. configurationm @11#, whereas in
more complicated uniform@11# or random problems@10#,
one may need to replaceNc,a

(k) (m) by fa
(k) . In the latter cases

the FA yields lower-bound estimates for the total number
g.s.’s, i.e.,

Ng.s.
(n)>A)

k51

n S)
a

~ga!fa
(k)D . ~11!

Let us now consider a randomly frustrated system,
which case one needs to apply an average over the diso
in the equation above one has that
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@Ng.s.
(n)#av>AF )

k51

n

)
a

~ga!fa
(k)G

av

5FexpS (
k51

n

(
a

fa
(k) ln gaD G

av

>expS (
k51

n

(
a

@fa
(k)#av ln gaD , ~12!

where we have used, similarly to what was done in Eq.~9!,
the convexity property of the exponential function. It is im
portant to point out that the averages over the disorder in
~12! refer to hierarchy leveln ~in @Ng.s.

(n)#av) and to each hi-
erarchy levelk ~in @fa

(k)#av), since the probability distribu-
tion associated with the disorder is renormalized at each
erarchy level.

Let us now define the FA for random systems@10# as an
approximation which allows one to factorize the avera
number of ground states as

@Ng.s.FA
(n) #av5A)

k51

n S)
a

~ga! [fa
(k)] avD , ~13!

which, according to Eq.~12!, yields a lower-bound estimat
for average number of g.s.’s of the HL,
d

q.

i-

e

@Ng.s.
(n)#av>@Ng.s.FA

(n) #av . ~14!

It is important to recall that the above result holds for
arbitrary HL. This ensures that the results of Ref.@10#, for
nearest-neighbor-interaction6J Ising spin glasses on dia
mond HL’s, are indeed lower-bound estimates; the
yields, for thed53 diamond HL, the exponential increase
Eq. ~1! with h'0.208 @10#. The result@Ng.s.

(n)#av52 if d
.2.58, for continuous probability distributions for the co
plings @10#, is in full agreement with recent investigations
the Ising spin glass, with a Gaussian probability distributi
for the couplings, on the diamond HL of fractal dimensio
d53, which find evidence of a simple spin-glass pha
~characterized by two time-reversed states only! @12#. How-
ever, the results of Ref.@10#, for the average number o
ground states of6J Ising spin glasses on diamond HL’s
which are demonstrated herein to represent lower-bo
estimates—implying that this average number increases
fectively as an exponential ofN—strongly suggest a differ-
ent picture for the spin-glass phase of such systems.
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